Literature¶
The functionality of bfieldtools is based on a stream-function discretization of surface current onto a triangle mesh.
For a more theoretical and in-depth overview of the physics and computations used in bfieldtools, please see
A. J. Mäkinen, R. Zetter, J. Iivanainen, K. C. J. Zevenhoven, L. Parkkonen, and R. J. Ilmoniemi. Magnetic-field modeling with surface currents. Part I. Physical and computational principles of bfieldtools. Journal of Applied Physics, 128(6):063906, 2020. doi:10.1063/5.0016090.
For a more software-centred of bfieldtools and an overview of coil design, please see
R. Zetter, A. J. Mäkinen, J. Iivanainen, K. C. J. Zevenhoven, R. J. Ilmoniemi, and L. Parkkonen. Magnetic field modeling with surface currents. Part II. Implementation and usage of bfieldtools. Journal of Applied Physics, 128(6):063905, 2020. doi:10.1063/5.0016087.
For a detailed description of the thermal noise computation method used in bfieldtools, please see
J. Iivanainen, A. J. Mäkinen, R. Zetter, K. C. J. Zevenhoven, R. J. Ilmoniemi, and L. Parkkonen. A general method for computing thermal magnetic noise arising from thin conducting objects. ArXiv, 2020. URL: https://arxiv.org/abs/2007.08963.
Selected papers¶
A selection of useful papers can also be found below:
General introduction to stream functions
G.N. Peeren. Stream function approach for determining optimal surface currents. PhD thesis, Philips Research, 2003. doi:10.6100/IR570424.
G. N. Peeren. Stream function approach for determining optimal surface currents. Journal of Computational Physics, 191(1):305–321, 2003. doi:10.1016/S0021-9991(03)00320-6.
K. C. J. Zevenhoven, S. Busch, M. Hatridge, F. Öisjöen, R. J. Ilmoniemi, and J. Clarke. Conductive shield for ultra-low-field magnetic resonance imaging: Theory and measurements of eddy currents. Journal of Applied Physics, 115(10):1–12, 2014. doi:10.1063/1.4867220.
Coil-design papers using the similar methods as bfieldtools
M. S. Poole. Improved equipment and techniques for dynamic shimming in high field MRI. PhD thesis, University of Nottingham, 2007.
S. Pissanetzky. Minimum energy MRI gradient coils of general geometry. Measurement Science and Technology, 3(7):667, 1992. doi:10.1088/0957-0233/3/7/007.
G. Bringout and T. M. Buzug. Coil design for magnetic particle imaging: application for a preclinical scanner. IEEE Transactions on Magnetics, 51(2):1–8, 2014. doi:10.1109/TMAG.2014.2344917.
On the calculation of Laplace-Beltrami eigenfunctions (Surface Harmonics)
M. Reuter, S. Biasotti, D. Giorgi, G. Patanè, and M. Spagnuolo. Discrete Laplace–Beltrami operators for shape analysis and segmentation. Computers & Graphics, 33(3):381–390, 2009. doi:10.1016/j.cag.2009.03.005.
B. Levy. Laplace-Beltrami eigenfunctions towards an algorithm that “understands” geometry. In IEEE International Conference on Shape Modeling and Applications 2006 (SMI’06), 13–13. 2006. doi:10.1109/SMI.2006.21.
Thermal noise
S. Uhlemann, H. Müller, J. Zach, and Max. Haider. Thermal magnetic field noise: electron optics and decoherence. Ultramicroscopy, 151:199 – 210, 2015. doi:https://doi.org/10.1016/j.ultramic.2014.11.022. Special Issue: 80th Birthday of Harald Rose; PICO 2015 – Third Conference on Frontiers of Aberration Corrected Electron Microscopy.
B. J. Roth. Thermal fluctuations of the magnetic field over a thin conducting plate. Journal of Applied Physics, 83(2):635–638, 1998. doi:10.1063/1.366753.