Note
Click here to download the full example code
Test diagonal of inductance matrixΒΆ
Use different number of quadrature points and two different implementations
import numpy as np
import matplotlib.pyplot as plt
from bfieldtools.utils import load_example_mesh
coilmesh = load_example_mesh("10x10_plane")
from bfieldtools.mesh_impedance import self_inductance_matrix, mutual_inductance_matrix
M5 = mutual_inductance_matrix(coilmesh, coilmesh, quad_degree=5)
M6 = mutual_inductance_matrix(coilmesh, coilmesh, quad_degree=6)
M7 = mutual_inductance_matrix(coilmesh, coilmesh, quad_degree=7)
plt.figure()
for m in (M5, M6, M7):
plt.plot(np.diag(m))
MM5 = self_inductance_matrix(coilmesh, quad_degree=5, analytic_self_coupling=True)
MM6 = self_inductance_matrix(coilmesh, quad_degree=6, analytic_self_coupling=True)
MM7 = self_inductance_matrix(coilmesh, quad_degree=7, analytic_self_coupling=True)
Out:
Estimating 2432 MiB required for 676 by 676 vertices...
Computing inductance matrix in 20 chunks (10492 MiB memory free), when approx_far=True using more chunks is faster...
Computing triangle-coupling matrix
Estimating 2432 MiB required for 676 by 676 vertices...
Computing inductance matrix in 20 chunks (10495 MiB memory free), when approx_far=True using more chunks is faster...
Computing triangle-coupling matrix
Estimating 2432 MiB required for 676 by 676 vertices...
Computing inductance matrix in 20 chunks (10499 MiB memory free), when approx_far=True using more chunks is faster...
Computing triangle-coupling matrix
Estimating 2432 MiB required for 676 by 676 vertices...
Computing inductance matrix in 20 chunks (10500 MiB memory free), when approx_far=True using more chunks is faster...
Computing triangle-coupling matrix
Estimating 2432 MiB required for 676 by 676 vertices...
Computing inductance matrix in 20 chunks (10508 MiB memory free), when approx_far=True using more chunks is faster...
Computing triangle-coupling matrix
Estimating 2432 MiB required for 676 by 676 vertices...
Computing inductance matrix in 20 chunks (10508 MiB memory free), when approx_far=True using more chunks is faster...
Computing triangle-coupling matrix
Total running time of the script: ( 0 minutes 15.484 seconds)