bfieldtools.integrals.triangle_potential_dipole_linear¶
-
bfieldtools.integrals.
triangle_potential_dipole_linear
(R, tn, ta)¶ Potential of dipolar density with magnitude of a linear shape function on a triangle, “omega_i” in de Munck’s paper
for the original derivation, see: J. C. de Munck, “A linear discretization of the volume mesh_conductor boundary integral equation using analytically integrated elements (electrophysiology application),” in IEEE Transactions on Biomedical Engineering, vol. 39, no. 9, pp. 986-990, Sept. 1992. doi: 10.1109/10.256433
- Parameters
- R(…, Ntri, 3, 3) array
Displacement vectors (…., Ntri, Ntri_verts, xyz)
- tn((Ntri), 3) array
Triangle normals (Ntri, dir)
- ta(Ntri), array
Triangle areas (Ntri, dir)
- Returns
- result: ndarray (…., Ntri, Ntri_verts)
Resultant dipolar potential for each shape functions (Ntri_verts) in each triangle (Ntri) at the points corresponding to displacement vectors in R