bfieldtools.integrals.triangle_potential_dipole_linear

bfieldtools.integrals.triangle_potential_dipole_linear(R, tn, ta)

Potential of dipolar density with magnitude of a linear shape function on a triangle, “omega_i” in de Munck’s paper

for the original derivation, see: J. C. de Munck, “A linear discretization of the volume mesh_conductor boundary integral equation using analytically integrated elements (electrophysiology application),” in IEEE Transactions on Biomedical Engineering, vol. 39, no. 9, pp. 986-990, Sept. 1992. doi: 10.1109/10.256433

Parameters
R(…, Ntri, 3, 3) array

Displacement vectors (…., Ntri, Ntri_verts, xyz)

tn((Ntri), 3) array

Triangle normals (Ntri, dir)

ta(Ntri), array

Triangle areas (Ntri, dir)

Returns
result: ndarray (…., Ntri, Ntri_verts)

Resultant dipolar potential for each shape functions (Ntri_verts) in each triangle (Ntri) at the points corresponding to displacement vectors in R